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1. (15 points) If Âs is an operator in the Shrödinger picture and ÂH is the corresponding operator in the Heisenberg picture,
Such that

ÂH = e
−iĤt

h̄ Âse
iĤt
h̄

Under what conditions ÂH can be time-independent. Justify your answer.
As must be time independent and commute with the Hamiltonian.

2. A Hamiltonian H has two orthonormal eigenstates |1 > and |2 > such that:

Ĥ|1 >= E1|1 > Ĥ|2 >= E2|2 > E1 6= E2

Two states |A > and |B > are defined as follows:

< 1|A >=
1√
2

< 2|A >=
i√
2

< 1|B >=
1√
2

< 2|B >=
−i√

2

(a) (6 points) Calculate < A|B > and < B|A >

< A|B > = < A|I|B >=< A|(|1 >< 1|+ |2 >< 2|)|B >

= < A|1 >< 1|B > + < A|2 >< 2|B >

=
1√
2
× 1√

2
+
−i√

2
× −i√

2
= 0

(b) (6 points) If the system initially in the state |ψ(t = 0) >= |A >, what is the time dependent state |ψ(t) >?

|ψ(t = 0) >= |A >= |1 > +|2 >
|ψ(t) >= |1 > e−iE1t/h̄ + |2 > e−iE2t/h̄

(c) (8 points) What is the probability of finding the particle at state |A > at any time t?
Probability is defined as:

| < A|ψ(t) > |2 = |e−iE1t/h̄ + e−iE2t/h̄|2
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3. Consider an electron in the Hydrogen-atom. The wavefunction of the electron is, at time t =0, written as:

Ψ(r, t = 0) = A(ψ211 + 2ψ300 + ψ421)

(a) (4 points) Find the normalization constant A
Since ψnlm forms an orthonormal set then:

1 = A2(1 + 4 + 1)

A =
1√
6

(b) (4 points) Write the wavefunction at any later time t

Ψ(r, t = 0) =
1√
6

(ψ211e
−iE2t/h̄ + 2ψ300e

−iE3t/h̄ + ψ421e
−iE4t/h̄)

(c) (4 points) What is the expectation value of Lz

Since ψnlm is an eigenvector of Lz, then

< Lz > =
∑

c2nLz

=
1

6
(h̄) +

4

6
(0) +

1

6
(h̄) = h̄/3

(d) (4 points) What is the expectation value of L2

Since ψnlm is an eigenvector of L2, then

< L2 > =
∑

c2nh̄
2l(l + 1)

=
1

6
(2h̄2) +

4

6
(0h̄2) +

1

6
(6h̄2) = 4h̄2/3

(e) (4 points) What is the expectation value of H
Since ψnlm is an eigenvector of H, then

< H > =
∑

c2nEn

=
1

6
(E2) +

4

6
(E3) +

1

6
(E4)
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4. Consider a particle with spin-angular momentum j=3/2. There are four sub-levels with this value of j but different eigenvalues
of ĵz. They are written in the following form |jmj >: | 32

3
2 >, | 32

1
2 >, | 32

−1
2 >, and | 32

−3
2 >.

(a) (6 points) Show that the raising operator can be written in the following form:

ĵ+ =
√

3|3
2

3

2
><

3

2

1

2
|+ 2|3

2

1

2
><

3

2

−1

2
|+
√

3|3
2

−1

2
><

3

2

−3

2
|

We know(can calculate) the following relations:

j+|
3

2

3

2
> = 0

j+|
3

2

1

2
> =

√
3|3

2

3

2
>

j+|
3

2

−1

2
> = 2|3

2

1

2
>

j+|
3

2

−3

2
> =

√
3|3

2

−1

2
>

j+ = j+(|3
2

3

2
><

3

2

3

2
|+ |3

2

1

2
><

3

2

1

2
|+ |3

2

−1

2
><

3

2

−1

2
|+ |3

2

−3

2
><

3

2

−3

2
|)

and now we can get the required results.

(b) (3 points) Write ĵ−
We know that j− = j†+

ĵ+ =
√

3|3
2

1

2
><

3

2

3

2
|+ 2|3

2

−1

2
><

3

2

1

2
|+
√

3|3
2

−3

2
><

3

2

−1

2
|

(c) (8 points) Find the matrix representation of ĵx, ĵy, and ĵz

ĵz = h̄


3/2 0 0 0
0 1/2 0 0
0 0 −1/2 0
0 0 0 −3/2



ĵ+ = h̄


0
√

3 0 0
0 0 2 0

0 0 0
√

3
0 0 0 0



ĵ− = h̄


0 0 0 0√
3 0 0 0

0 2 0 0

0 0
√

3 0



ĵx =
ĵ+ + ĵ−

2
=
h̄

2


0
√

3 0 0√
3 0 2 0

0 2 0
√

3

0 0
√

3 0



ĵx =
ĵ+ + ĵ−

2
=
h̄

2


0
√

3 0 0√
3 0 2 0

0 2 0
√

3

0 0
√

3 0



(d) (4 points) let |ψ(t = 0) >= 1
2
√

2
(| 32

3
2 > +

√
3| 32

1
2 > +

√
3| 32

1
2 > +| 32

−3
2 >) Show that it is an eigenvector of jx.

One can write the wavefunction in matrix form as:

ĵx ==
1

2
√

2


1√
3√
3

1


Now one can multiply the matrix of ĵx with the wave function and show that this wave function is indeed an eignevector
ĵx with an eigenvalue of 3/2
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(e) (4 points) If the particle a magnetic moment ~µ = g~j, and is placed in uniform magnetic field that points in the x-
direction. The particle initial wave-function is given in the previous part. Find < ĵz > (t)
One can notice that the Hamiltonian is probational to jx and thus the wavefunction in the previous part is a stationary
state. Thus the expectation value of any operator doesn’t depend on time. < jz > (t) = 0

5. (20 points) Show that any operator that commutes with two Cartesian components of the angular momentum operator
necessarily commutes with the total angular momentum operator.
We are given the following:

[A,Li] = [A,Lj ] = 0

All what we need now is to show that

[A,Lk] = 0

We know that

[Li, Lj ] = ih̄Lk

Now:

[A,Lz] =

[
A,

i

h̄
[Li, Lj ]

]
=

i

h̄
[A,LiLj − LjLi]

=
i

h̄
([A,LiLj ]− [A,LjLi])

= 0

Question: 1 2 3 4 5 Total

Points: 15 20 20 25 20 100

Score:

Good Luck
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